

    
      
          
            
  
Welcome to floky’s documentation!


Contents:


	Getting started

	Installation

	LSH
	Hyperparameters





	Base LSH and Multi Probe LSH example
	Data preparation

	Comparison Query / Preprocessing duration and Recall





	Reference
	SRP

	L2












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Getting started

floky exposes Python bindings to the LSH implementation of lsh-rs [https://docs.rs/lsh-rs/0.2.3/lsh_rs/]. An LSH
implementation in Rust. floky is therefore blazingly fast.

Below shows how you can get started with floky.

from floky import SRP
import numpy as np

N = 10000
n = 100
dim = 10

# Generate some random data points
data_points = np.random.randn(N, dim)

# Do a one time (expensive) fit.
lsh = SRP(n_projections=19, n_hash_tables=10)
lsh.fit(data_points)

# Query approximated nearest neigbors in sub-linear time
query = np.random.randn(n, dim)
results = lsh.predict(query)









          

      

      

    

  

    
      
          
            
  
Installation

Hopefully installation is as easy as

$ pip install floky





The floky wheels are only compiled for Linux at the moment. Are you on Linux and do you encounter an error? Please
open an issue [https://github.com/ritchie46/lsh-rs/issues].

If you are on macOs or Windows, you can compile from
source [https://github.com/ritchie46/lsh-rs/]. You probably need a Fortran compiler to be able to. If you have
succeeded, please help me add your steps to travis [https://github.com/ritchie46/lsh-rs/blob/master/.travis.yml].





          

      

      

    

  

    
      
          
            
  
LSH

Locality Sensitive Hashing can help you search through enormous data sets for approximated nearest neighbors.
If you want to read more about this algorithm try the following sources:


	Introduction [http://people.csail.mit.edu/gregory/annbook/introduction.pdf]




The gist of the algorithm is that data points (vectors) that are close in some high dimensional space will be likely to
have the same hash. The hash functions we choose to hash the vectors determine the distance function we use to define
“closeness”. At the moment we expose the following hashers:







	Hasher

	Distance/ similarity





	Sign Random Projections

	Cosine similarity



	P-stable distributions

	Euclidean







Hyperparameters

The LSH algorithm requires two hyperparameters:


	The length of the generated hash k. A larger value for k leads to less hash collisions, thus faster query times.


	The number of different hash tables L. There will be L hash tables with L randomly generated hash functions.




The L hyperparamter can be derived from the query success probability and k. Read my
blog post [https://www.ritchievink.com/blog/2020/04/07/sparse-neural-networks-and-hash-tables-with-locality-sensitive-hashing/#2%20Locality%20Sensitive%20Hashing]
on that subject to get an explanation.


L2

The L2 LSH has an additional hyperparameter r. This is the width of bucket hash values can fall in.
If you normalize your data by the distance threshold \(R\) this hyperparameter should be approximately 4.









          

      

      

    

  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Reference
    

    
 
  

    
      
          
            
  
Reference


SRP




L2







          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  

  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
    Base LSH and Multi Probe LSH example
    

    
 
  

    
      
          
            
  


Base LSH and Multi Probe LSH example

Download color histograms of the flick30k dataset here [https://www.kaggle.com/ritchie46/flickr30khistograms/download].


[1]:






import numpy as np
from scipy.spatial.distance import cdist
from floky import L2
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
import time








Data preparation

First we load the data in numpy. Next we compute the real \(N\) nearest neighbors with scipy.spatial.distance.cdist.

From these \(N\) distance results we compute the mean and determine the top k results. Next we scale the data by \(R\). This makes it easier to verify if the LSH algorithm can find nearest neighbors. If we scale the data by \(\frac{1}{R}\) we expect the exact Nearest Neighbor to have a distance smaller than 1. If this isn’t the case, we need to choose another distance \(R\).


[2]:






with open("flickr30k_histograms.csv") as f:
    a = np.loadtxt(f, delimiter=",")








[3]:






# We will do N queries and compute recall and query times.
N = 100








[23]:






# Find the exact nearest neighbors. This is needed to compute recall.
t0 = time.time_ns()
dist = cdist(a[:N], a)
# ms
exact_duration = (time.time_ns() - t0) / 1e6
exact_duration








[23]:







1808.042179







[5]:






# non trivial top 1
# we skip the first as that is the query point itself
top_k = dist.argsort(1)[:, 1:2]
mean = dist.mean()
top_k_dist = dist[np.arange(N)[:, None], top_k]








[6]:






# Scale data by distance. So scaled R will be 1.
R = mean / 2.5
a /= R
dist /= R
top_k_dist /= R
R








[6]:







12717.77025887411







[7]:






# Check if real nearest neigbors are < R = 1
print("{}% < R".format((top_k_dist < 1).sum() / (top_k_dist.shape[0] * top_k_dist.shape[1]) * 100))
top_k_dist[:10]













83.0% < R







[7]:







array([[0.99372539],
       [0.45435497],
       [0.79676334],
       [1.14787659],
       [0.78890876],
       [0.63275089],
       [0.58949666],
       [0.99201873],
       [1.52371323],
       [1.61113221]])









Comparison Query / Preprocessing duration and Recall

Below we’ll examine the impact of the query duration on the recall.

We take a look at two k (# of values in the hash) values: * 15 * 30

For Base LSH we increase the numebr of hash tables to increase the recall. For Multi-probe LSH we increase the number of probes we execute. We will keep the number of hash tables constant to only 5.


[8]:






def cum_mov_avg(x, avg, n):
    return (x + n * avg) / (n + 1)

def recall(k, L):
    dim = len(a[0])
    lsh = L2(k, L, dim, in_mem=True)

    t0 = time.time()
    lsh.fit(a)
    fit_duration = time.time() - t0

    t0 = time.time_ns()
    p = lsh.predict(a[:N], only_index=True, top_k=6);
    predict_duration = time.time_ns() - t0

    c = 0
    avg_collisions = 0
    for i, pi in enumerate(p):
        if pi.n_collisions == 1:
            continue
        idx = set(pi.index[1:])
        if len(idx.intersection(top_k[i])) > 0:
            c += 1
        avg_collisions = cum_mov_avg(pi.n_collisions, avg_collisions, i)

    return c / N, avg_collisions, fit_duration, predict_duration

ks = []
Ls = []
recalls = []
avg_cs = []
duration_fit = []
duration_predict = []
for k in [15, 30]:
    for L in [5, 10, 15, 20, 50, 100]:
        ks.append(k)
        Ls.append(L)

        r, avg_collision, fit_duration, predict_duration = recall(k, L)
        duration_fit.append(fit_duration)
        duration_predict.append(predict_duration)
        recalls.append(r)
        avg_cs.append(avg_collision)













32000it [00:00, 60119.95it/s]
32000it [00:01, 30086.65it/s]
32000it [00:01, 21003.48it/s]
32000it [00:01, 16029.99it/s]
32000it [00:04, 6494.46it/s]
32000it [00:10, 2953.71it/s]
32000it [00:01, 17412.80it/s]
32000it [00:03, 9178.54it/s]
32000it [00:05, 6099.98it/s]
32000it [00:06, 5050.17it/s]
32000it [00:15, 2131.61it/s]
32000it [00:31, 1020.02it/s]







[9]:






df = pd.DataFrame({"recall": recalls,
             "avg_collisions": avg_cs,
             "L": Ls,
             "K": ks,
             "duration_fit": duration_fit,
             "duration_predict": duration_predict
             })
df








[9]:








  
    
  